Associated Higgs Boson Production with Heavy Quarks

S. Dawson Victoria, July, 2004

- Motivation (discovery, precision studies)
- $pp \rightarrow b\overline{b}H, t\overline{t}H$ (LHC)
- $p\overline{p} \rightarrow b\overline{b}H$, $t\overline{t}H$ (Tevatron, Run II)
 - With emphasis on:
- Theoretical predictions
- Relevance to Higgs Boson studies
 - With L. Riena, C. Jackson, L. Orr, D. Wackeroth

Strong case for a light scalar Higgs boson, both SM and MSSM

NEW

• Old:

- $-M_{t}=174\pm5.1 \text{ GeV}$
- $-M_{\rm H}=96^{+60}_{-38}~{\rm GeV}$
- $-M_{H}$ < 219 (95% cl)
- New:
 - $-M_{t}=178\pm4.3 \text{ GeV}$
 - $-M_{\rm H}=117^{+67}_{-45}~{\rm GeV}$
 - $-M_{\rm H}$ < 251 (95% cl)

Best fit not in region excluded from direct searches

Once we find the Higgs, we need to measure its couplings

Coupling constants measured quite precisely at LHC

Duhrssen, Heinemeyer, Logan, Rainwater, Weiglein, Zeppenfeld hep-ph/0406323

LC measures couplings to a

Battaglia & Desch, hep-ph/0101165

Linear Collider is the place!

ttH is important for LHC Discovery

General Framework

 $pp \rightarrow t\bar{t}H$ important for discovery at the LHC Only $t\bar{t}H$ production can measure directly the top Yukawa Coupling (Y_t) : $\sigma \approx Y_t^2$

$pp, p\overline{p} \rightarrow t\overline{t}H$ Need for NLO calculation

Tree level cross sections have very strong μ dependence

NLO $O(\alpha_s^3)$ corrections by 2 groups: Beenakker, Dittmaier, Kramer, Plumper, Spira; Dawson, Reina, Orr, Wackeroth

LHC, NLO cross section:

$$pp \rightarrow t\bar{t}H$$

Theoretical uncertainty reduced to about 15%

Dawson, Jackson, Reina, Orr ,Wackeroth, hep-ph/0305087; Beenacker et al, hep-ph/0211352, hep-ph/0107081

Tevatron, NLO cross section

$$p\overline{p} \rightarrow t\overline{t}H$$

Note reduced μ dependence of NLO result

Rate too small to be observed at Tevatron

Reina, Dawson, Wackeroth, hep-ph/0109066; Reina, Dawson, hep-ph/0107101; Beenacker et al, hep-ph/0211352, hep-ph/0107081

What about bbH?

- In SM, bbH couplings suppressed by $(m_b/v)^2 \approx .0004$
- SUSY models have more Higgs bosons

$$h_0, H_0, A_0, H^{\pm}$$

• At tree level, couplings depend only on

$$\tan \beta$$
, M_A

Can be huge enhancement!

Production of SUSY Higgs Bosons

- For large tan β , dominant production mechanism is with b's
- \triangleright bbh can be 10x's SM Higgs rate in SUSY for large tan β

What is the dominant process?

Answer depends on whether you tag outgoing b's

$p\overline{p} \rightarrow b\overline{b}H$ at NLO

- Almost identical calculation to tth calculation
 - Dominant contribution at both Tevatron and LHC is gg initial state
 - Virtual + real corrections computed numerically using phase space slicing
 - b quark mass included everywhere
 - Differences: closed loops with top quarks, numerical problems from large log(m_b/M_H)

$pp, p\overline{p} \rightarrow bbH$ Strong dependence on p_t^b cuts:

Dawson, Jackson, Reina, Wackeroth, hep-ph/-311067; Dittmaier, Kramer, Spira, hep-ph/0309204

$pp, p\overline{p} \rightarrow b\overline{b}H$ Enhancement in MSSM

Note log scale!

Can observe heavy MSSM scalar Higgs boson

Large Residual Scheme Dependence

•Not obvious what "best" scheme is

 Large remaining scale/scheme dependence between OS and MS at NLO

• Effect $\approx 10-20\%$

Inclusive and semi-inclusive bbH production

- Two approaches:
 - Fixed flavor approach
 - Fixed order matrix element calculation based on the processes gg→bbH, qq →bbH
 - Variable flavor number scheme:
 - Use b quark PDF to sum to all orders large logarithms $\alpha_s log(M_H^2/m_b^2)$ which arise due to gluon splitting $g \rightarrow bb$ to collinear b's

bH production at NLO

- Larger rate than 2-b tag process
- Extra b tag and Higgs transverse momentum improve detection efficiency from 0-b tag process (bb→H)
- Variable flavor number scheme, dominant process is bg →bH
- Fixed flavor number scheme, dominant process is gg →bbH

D0 search: tag 3 b's

Exclusive cross section for $pp \rightarrow b\bar{b}H : 1 \text{ b tag}$

• Compare variable flavor number scheme with fixed flavor number scheme for PDFs

No closed top loop in gb curves

Campbell et al, hep-ph/0405302

Inclusive Cross Section for bb→H: 0 b tags

Campbell et al, hep-ph/0405302

Harlander & Kilgore, hep-ph/0304035

bb→H in MSSM

5σ discovery region

State of the art predictions for Higgs production

Bands represent factorization/renormalization scale uncertainty

QCD &EW Corrections to e⁺e⁻ →tth Production

Cancellation of QCD & EW corrections at high \sqrt{s}

Denner, Dittmaier, Roth, Weber, hep-ph/0309274

Conclusion

- ttH, bbH interesting production modes at Tevatron and LHC
- Top Yukawa coupling: the LHC can play a crucial role and complement a \sqrt{s} =500 GeV LC
- Enhanced bbh: possible signal of New Physics at the Tevatron and LHC
- Crucial to have NLO QCD corrections: theoretical uncertainty greatly reduced